2000 character limit reached
Three natural subgroups of the Brauer-Picard group of a Hopf algebra with applications (1702.05133v1)
Published 16 Feb 2017 in math.QA and math.CT
Abstract: In this article we construct three explicit natural subgroups of the Brauer-Picard group of the category of representations of a finite-dimensional Hopf algebra. In examples the Brauer Picard group decomposes into an ordered product of these subgroups, somewhat similar to a Bruhat decomposition. Our construction returns for any Hopf algebra three types of braided autoequivalences and correspondingly three families of invertible bimodule categories. This gives examples of so-called (2-)Morita equivalences and defects in topological field theories. We have a closer look at the case of quantum groups and Nichols algebras and give interesting applications. Finally, we briefly discuss the three families of group-theoretic extensions.