Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Algebraic quantum groupoids - An example (1702.04903v1)

Published 16 Feb 2017 in math.RA

Abstract: Let $B$ and $C$ be non-degenerate idempotent algebras and assume that $E$ is a regular separability idempotent in $M(B\otimes C)$. Define $A=C\otimes B$ and $\Delta:A\to M(A\otimes A)$ by $\Delta(c\otimes b)=c\otimes E\otimes b$. The pair $(A,\Delta)$ is a weak multiplier Hopf algebra. Because we assume that $E$ is regular, it is a regular weak multiplier Hopf algebra. There is a faithful left integral on $(A,\Delta)$ that is also right invariant. Therefore, we call $(A,\Delta)$ a unimodular algebraic quantum groupoid. By the general theory, the dual $(\widehat A,\widehat \Delta)$ can be constructed and it is again an algebraic quantum groupoid. In this paper, we treat this algebraic quantum groupoid and its dual in great detail. The main purpose is to illustrate various aspects of the general theory. For this reason, we will also recall the basic notions and results of separability idempotents and weak multiplier Hopf algebras with integrals. The paper is to be considered as an expository note.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)