Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new class of robust two-sample Wald-type tests (1702.04552v1)

Published 15 Feb 2017 in stat.ME and stat.AP

Abstract: Parametric hypothesis testing associated with two independent samples arises frequently in several applications in biology, medical sciences, epidemiology, reliability and many more. In this paper, we propose robust Wald-type tests for testing such two sample problems using the minimum density power divergence estimators of the underlying parameters. In particular, we consider the simple two-sample hypothesis concerning the full parametric homogeneity of the samples as well as the general two-sample (composite) hypotheses involving nuisance parameters also. The asymptotic and theoretical robustness properties of the proposed Wald-type tests have been developed for both the simple and general composite hypotheses. Some particular cases of testing against one-sided alternatives are discussed with specific attention to testing the effectiveness of a treatment in clinical trials. Performances of the proposed tests have also been illustrated numerically through appropriate real data examples.

Summary

We haven't generated a summary for this paper yet.