Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Three Mechanisms of Visual Attention for Active Visual Search (1702.04292v1)

Published 14 Feb 2017 in cs.CV and cs.RO

Abstract: Algorithms for robotic visual search can benefit from the use of visual attention methods in order to reduce computational costs. Here, we describe how three distinct mechanisms of visual attention can be integrated and productively used to improve search performance. The first is viewpoint selection as has been proposed earlier using a greedy search over a probabilistic occupancy grid representation. The second is top-down object-based attention using a histogram backprojection method, also previously described. The third is visual saliency. This is novel in the sense that it is not used as a region-of-interest method for the current image but rather as a noncombinatorial form of look-ahead in search for future viewpoint selection. Additionally, the integration of these three attentional schemes within a single framework is unique and not previously studied. We examine our proposed method in scenarios where little or no information regarding the environment is available. Through extensive experiments on a mobile robot, we show that our method improves visual search performance by reducing the time and number of actions required.

Citations (4)

Summary

We haven't generated a summary for this paper yet.