Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is there an algorithm that decides the solvability of a Diophantine equation with a finite number of solutions? (1702.03861v1)

Published 9 Feb 2017 in math.NT

Abstract: For a positive integer n, let {\theta}(n) denote the smallest positive integer b such that for each system S \subseteq {x_i \cdot x_j=x_k, x_i+1=x_k: i,j,k \in {1,...,n}} which has a solution in positive integers x_1,...,x_n and which has only finitely many solutions in positive integers x_1,...,x_n, there exists a solution of S in ([1,b] \cap N)n. We conjecture that there exists an integer {\delta} \geq 9 such that the inequality {\theta}(n) \leq (2{2{n-5}}-1){2{n-5}}+1 holds for every integer n \geq {\delta}. We prove: (1) for every integer n>9, the inequality {\theta}(n)<(2{2{n-5}}-1){2{n-5}}+1 implies that 2{2{n-5}}+1 is composite, (2) the conjecture implies that there exists an algorithm which takes as input a Diophantine equation D(x_1,...,x_p)=0 and returns the message "Yes" or "No" which correctly determines the solvability of the equation D(x_1,...,x_p)=0 in positive integers, if the solution set is finite, (3) if a function f:N{0} \to N{0} has a finite-fold Diophantine representation, then there exists a positive integer m such that f(n)<{\theta}(n) for every integer n>m.

Summary

We haven't generated a summary for this paper yet.