Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reservoir Computing Using Non-Uniform Binary Cellular Automata (1702.03812v1)

Published 13 Feb 2017 in cs.ET and cs.AI

Abstract: The Reservoir Computing (RC) paradigm utilizes a dynamical system, i.e., a reservoir, and a linear classifier, i.e., a read-out layer, to process data from sequential classification tasks. In this paper the usage of Cellular Automata (CA) as a reservoir is investigated. The use of CA in RC has been showing promising results. In this paper, selected state-of-the-art experiments are reproduced. It is shown that some CA-rules perform better than others, and the reservoir performance is improved by increasing the size of the CA reservoir itself. In addition, the usage of parallel loosely coupled CA-reservoirs, where each reservoir has a different CA-rule, is investigated. The experiments performed on quasi-uniform CA reservoir provide valuable insights in CA reservoir design. The results herein show that some rules do not work well together, while other combinations work remarkably well. This suggests that non-uniform CA could represent a powerful tool for novel CA reservoir implementations.

Citations (32)

Summary

We haven't generated a summary for this paper yet.