Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sums of finitely many distinct rationals (1702.01316v2)

Published 4 Feb 2017 in math.NT

Abstract: ${\cal E}$ denotes the family of all finite nonempty $S\subseteq{\mathbb N}:={1,2,\ldots}$, and ${\cal E}(X):={\cal E}\cap{S:S\subseteq X}$ when $X\subseteq{\mathbb N}$. Similarly, ${\cal F}$ denotes the family of all finite nonempty $T\subseteq{\mathbb Q}+$, and ${\cal F}(Y) := {\cal F}\cap{T:T\subseteq Y}$ where ${\mathbb Q}+$ is the set of all positive rationals and $Y\subseteq{\mathbb Q}+$. This paper treats the functions $\sigma:{\cal E}\rightarrow{\mathbb Q}+$ given by $\sigma:S\mapsto\sigma S :=\sum{1/x:x\in S}$, the function $\delta:{\cal E}\rightarrow{\mathbb N}$ defined by $\sigma S = \nu S/\delta S$ where the integers $\nu S$ and $\delta S$ are coprime, and the more general function $\Sigma:{\cal F}\rightarrow{\mathbb Q}+$ where $\Sigma T$ denotes the sum of the elements in $T$ for $T\in{\cal F}$. Theorem 1.1. For each $r\in{\mathbb Q}+$, there exists an infinite pairwise disjoint subfamily ${\cal H}_r\subseteq{\cal E}$ such that $r=\sigma S$ for all $S\in{\cal H}_r$. Theorem 1.2. Let $X$ be a pairwise coprime set of positive integers. Then $\sigma$ restricted to ${\cal E}(X)$ and $\delta$ restricted to ${\cal E}(X)$ are injective. Also, $\sigma C\in{\mathbb N}$ for $C\in{\cal E}(X)$ only if $C={1}$. Theorem 6.5. There is a set $X$ of positive rational numbers for which $\Sigma:{\cal F}(X)\rightarrow{\mathbb Q}+$ is a surjection, but for which $1\in X$ and the only $S\in{\cal F}(X)$ with $\Sigma S = 1$ is $S = {1}$.

Summary

We haven't generated a summary for this paper yet.