Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear convergence of SDCA in statistical estimation (1701.07808v4)

Published 26 Jan 2017 in stat.ML and cs.LG

Abstract: In this paper, we consider stochastic dual coordinate (SDCA) {\em without} strongly convex assumption or convex assumption. We show that SDCA converges linearly under mild conditions termed restricted strong convexity. This covers a wide array of popular statistical models including Lasso, group Lasso, and logistic regression with $\ell_1$ regularization, corrected Lasso and linear regression with SCAD regularizer. This significantly improves previous convergence results on SDCA for problems that are not strongly convex. As a by product, we derive a dual free form of SDCA that can handle general regularization term, which is of interest by itself.

Citations (8)

Summary

We haven't generated a summary for this paper yet.