Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

By chance is not enough: Preserving relative density through non uniform sampling (1701.07110v1)

Published 24 Jan 2017 in cs.GR

Abstract: Dealing with visualizations containing large data set is a challenging issue and, in the field of Information Visualization, almost every visual technique reveals its drawback when visualizing large number of items. To deal with this problem we introduce a formal environment, modeling in a virtual space the image features we are interested in (e.g, absolute and relative density, clusters, etc.) and we define some metrics able to characterize the image decay. Such metrics drive our automatic techniques (i.e., not uniform sampling) rescuing the image features and making them visible to the user. In this paper we focus on 2D scatter-plots, devising a novel non uniform data sampling strategy able to preserve in an effective way relative densities.

Citations (38)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.