Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The switch Markov chain for sampling irregular graphs and digraphs (1701.07101v2)

Published 24 Jan 2017 in cs.DM and math.CO

Abstract: The problem of efficiently sampling from a set of (undirected, or directed) graphs with a given degree sequence has many applications. One approach to this problem uses a simple Markov chain, which we call the switch chain, to perform the sampling. The switch chain is known to be rapidly mixing for regular degree sequences, both in the undirected and directed setting. We prove that the switch chain for undirected graphs is rapidly mixing for any degree sequence with minimum degree at least 1 and with maximum degree $d_{\max}$ which satisfies $3\leq d_{\max}\leq \frac{1}{3}\, \sqrt{M}$, where $M$ is the sum of the degrees. The mixing time bound obtained is only a factor $n$ larger than that established in the regular case, where $n$ is the number of vertices. Our result covers a wide range of degree sequences, including power-law graphs with parameter $\gamma > 5/2$ and sufficiently many edges. For directed degree sequences such that the switch chain is irreducible, we prove that the switch chain is rapidly mixing when all in-degrees and out-degrees are positive and bounded above by $\frac{1}{4}\, \sqrt{m}$, where $m$ is the number of arcs, and not all in-degrees and out-degrees equal 1. The mixing time bound obtained in the directed case is an order of $m2$ larger than that established in the regular case.

Citations (36)

Summary

We haven't generated a summary for this paper yet.