Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Upper Bound to Zero-Delay Rate Distortion via Kalman Filtering for Vector Gaussian Sources (1701.06368v3)

Published 23 Jan 2017 in cs.IT and math.IT

Abstract: We deal with zero-delay source coding of a vector Gaussian autoregressive (AR) source subject to an average mean squared error (MSE) fidelity criterion. Toward this end, we consider the nonanticipative rate distortion function (NRDF) which is a lower bound to the causal and zero-delay rate distortion function (RDF). We use the realization scheme with feedback proposed in [1] to model the corresponding optimal "test-channel" of the NRDF, when considering vector Gaussian AR(1) sources subject to an average MSE distortion. We give conditions on the vector Gaussian AR(1) source to ensure asymptotic stationarity of the realization scheme (bounded performance). Then, we encode the vector innovations due to Kalman filtering via lattice quantization with subtractive dither and memoryless entropy coding. This coding scheme provides a tight upper bound to the zero-delay Gaussian RDF. We extend this result to vector Gaussian AR sources of any finite order. Further, we show that for infinite dimensional vector Gaussian AR sources of any finite order, the NRDF coincides with the zero-delay RDF. Our theoretical framework is corroborated with a simulation example.

Citations (12)

Summary

We haven't generated a summary for this paper yet.