Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

On Continuity Equations in Space-time Domains (1701.06237v3)

Published 23 Jan 2017 in math.AP

Abstract: In this paper we consider a class of continuity equations that are conditioned to stay in general space-time domains, which is formulated as a continuum limit of interacting particle systems. Firstly, we study the well-posedness of the solutions and provide examples illustrating that the stability of solutions is strongly related to the decay of initial data at infinity. In the second part, we consider the vanishing viscosity approximation of the system, given with the co-normal boundary data. If the domain is spatially convex, the limit coincides with the solution of our original system, giving another interpretation to the equation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)