Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Compression with SVD : A New Quality Metric Based On Energy Ratio (1701.06183v1)

Published 22 Jan 2017 in cs.CV

Abstract: Digital image compression is a technique that allows to reduce the size of an image in order to increase the capacity storage devices and to optimize the use of network bandwidth. The quality of compressed images with the techniques based on the discrete cosine transform or the wavelet transform is generally measured with PSNR or SSIM. Theses metrics are not suitable to images compressed with the singular values decomposition. This paper presents a new metric based on the energy ratio to measure the quality of the images coded with the SVD. A series of tests on 512 * 512 pixels images show that, for a rank k = 40 corresponding to a SSIM = 0,94 or PSNR = 35 dB, 99,9% of the energy are restored. Three areas of image quality assessments were identified. This new metric is also very accurate and could overcome the weaknesses of PSNR and SSIM.

Citations (5)

Summary

We haven't generated a summary for this paper yet.