Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudo-Wigner Matrices (1701.05544v5)

Published 19 Jan 2017 in cs.IT and math.IT

Abstract: We consider the problem of generating pseudo-random matrices based on the similarity of their spectra to Wigner's semicircular law. We introduce the notion of an r-independent pseudo-Wigner matrix ensemble and prove closeness of the spectra of its matrices to the semicircular density in the Kolmogorov distance. We give an explicit construction of a family of N by N pseudo-Wigner ensembles using dual BCH codes and show that the Kolmogorov complexity of the obtained matrices is of the order of log(N) bits for a fixed designed Kolmogorov distance precision. We compare our construction to the quasi-random graphs introduced by Chung, Graham and Wilson and demonstrate that the pseudo-Wigner matrices pass stronger randomness tests than the adjacency matrices of these graphs (lifted by the mapping 0 -> 1 and 1 -> -1) do. Finally, we provide numerical simulations verifying our theoretical results.

Summary

We haven't generated a summary for this paper yet.