Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sum of squares lower bounds for refuting any CSP (1701.04521v1)

Published 17 Jan 2017 in cs.CC

Abstract: Let $P:{0,1}k \to {0,1}$ be a nontrivial $k$-ary predicate. Consider a random instance of the constraint satisfaction problem $\mathrm{CSP}(P)$ on $n$ variables with $\Delta n$ constraints, each being $P$ applied to $k$ randomly chosen literals. Provided the constraint density satisfies $\Delta \gg 1$, such an instance is unsatisfiable with high probability. The \emph{refutation} problem is to efficiently find a proof of unsatisfiability. We show that whenever the predicate $P$ supports a $t$-\emph{wise uniform} probability distribution on its satisfying assignments, the sum of squares (SOS) algorithm of degree $d = \Theta(\frac{n}{\Delta{2/(t-1)} \log \Delta})$ (which runs in time $n{O(d)}$) \emph{cannot} refute a random instance of $\mathrm{CSP}(P)$. In particular, the polynomial-time SOS algorithm requires $\widetilde{\Omega}(n{(t+1)/2})$ constraints to refute random instances of CSP$(P)$ when $P$ supports a $t$-wise uniform distribution on its satisfying assignments. Together with recent work of Lee et al. [LRS15], our result also implies that \emph{any} polynomial-size semidefinite programming relaxation for refutation requires at least $\widetilde{\Omega}(n{(t+1)/2})$ constraints. Our results (which also extend with no change to CSPs over larger alphabets) subsume all previously known lower bounds for semialgebraic refutation of random CSPs. For every constraint predicate~$P$, they give a three-way hardness tradeoff between the density of constraints, the SOS degree (hence running time), and the strength of the refutation. By recent algorithmic results of Allen et al. [AOW15] and Raghavendra et al. [RRS16], this full three-way tradeoff is \emph{tight}, up to lower-order factors.

Citations (104)

Summary

We haven't generated a summary for this paper yet.