Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonreversible Langevin Samplers: Splitting Schemes, Analysis and Implementation (1701.04247v1)

Published 16 Jan 2017 in stat.ME and stat.CO

Abstract: For a given target density, there exist an infinite number of diffusion processes which are ergodic with respect to this density. As observed in a number of papers, samplers based on nonreversible diffusion processes can significantly outperform their reversible counterparts both in terms of asymptotic variance and rate of convergence to equilibrium. In this paper, we take advantage of this in order to construct efficient sampling algorithms based on the Lie-Trotter decomposition of a nonreversible diffusion process into reversible and nonreversible components. We show that samplers based on this scheme can significantly outperform standard MCMC methods, at the cost of introducing some controlled bias. In particular, we prove that numerical integrators constructed according to this decomposition are geometrically ergodic and characterise fully their asymptotic bias and variance, showing that the sampler inherits the good mixing properties of the underlying nonreversible diffusion. This is illustrated further with a number of numerical examples ranging from highly correlated low dimensional distributions, to logistic regression problems in high dimensions as well as inference for spatial models with many latent variables.

Summary

We haven't generated a summary for this paper yet.