Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Annotation for Microblog Topics Using Wikipedia Temporal Information (1701.03939v1)

Published 14 Jan 2017 in cs.IR

Abstract: Trending topics in microblogs such as Twitter are valuable resources to understand social aspects of real-world events. To enable deep analyses of such trends, semantic annotation is an effective approach; yet the problem of annotating microblog trending topics is largely unexplored by the research community. In this work, we tackle the problem of mapping trending Twitter topics to entities from Wikipedia. We propose a novel model that complements traditional text-based approaches by rewarding entities that exhibit a high temporal correlation with topics during their burst time period. By exploiting temporal information from the Wikipedia edit history and page view logs, we have improved the annotation performance by 17-28\%, as compared to the competitive baselines.

Citations (10)

Summary

We haven't generated a summary for this paper yet.