Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiprocessor Approximate Message Passing with Column-Wise Partitioning (1701.02578v2)

Published 10 Jan 2017 in cs.IT and math.IT

Abstract: Solving a large-scale regularized linear inverse problem using multiple processors is important in various real-world applications due to the limitations of individual processors and constraints on data sharing policies. This paper focuses on the setting where the matrix is partitioned column-wise. We extend the algorithmic framework and the theoretical analysis of approximate message passing (AMP), an iterative algorithm for solving linear inverse problems, whose asymptotic dynamics are characterized by state evolution (SE). In particular, we show that column-wise multiprocessor AMP (C-MP-AMP) obeys an SE under the same assumptions when the SE for AMP holds. The SE results imply that (i) the SE of C-MP-AMP converges to a state that is no worse than that of AMP and (ii) the asymptotic dynamics of C-MP-AMP and AMP can be identical. Moreover, for a setting that is not covered by SE, numerical results show that damping can improve the convergence performance of C-MP-AMP.

Citations (4)

Summary

We haven't generated a summary for this paper yet.