Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STARIMA-based Traffic Prediction with Time-varying Lags (1701.00977v1)

Published 4 Jan 2017 in cs.IT, cs.NI, and math.IT

Abstract: Based on the observation that the correlation between observed traffic at two measurement points or traffic stations may be time-varying, attributable to the time-varying speed which subsequently causes variations in the time required to travel between the two points, in this paper, we develop a modified Space-Time Autoregressive Integrated Moving Average (STARIMA) model with time-varying lags for short-term traffic flow prediction. Particularly, the temporal lags in the modified STARIMA change with the time-varying speed at different time of the day or equivalently change with the (time-varying) time required to travel between two measurement points. Firstly, a technique is developed to evaluate the temporal lag in the STARIMA model, where the temporal lag is formulated as a function of the spatial lag (spatial distance) and the average speed. Secondly, an unsupervised classification algorithm based on ISODATA algorithm is designed to classify different time periods of the day according to the variation of the speed. The classification helps to determine the appropriate time lag to use in the STARIMA model. Finally, a STARIMA-based model with time-varying lags is developed for short-term traffic prediction. Experimental results using real traffic data show that the developed STARIMA-based model with time-varying lags has superior accuracy compared with its counterpart developed using the traditional cross-correlation function and without employing time-varying lags.

Citations (46)

Summary

We haven't generated a summary for this paper yet.