Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homotopy classes of gauge fields and the lattice (1701.00775v5)

Published 3 Jan 2017 in math-ph, hep-lat, hep-th, math.AT, math.DG, and math.MP

Abstract: For a smooth manifold $M$, possibly with boundary and corners, and a Lie group $G$, we consider a suitable description of gauge fields in terms of parallel transport, as groupoid homomorphisms from a certain path groupoid in $M$ to $G$. Using a cotriangulation $\mathscr{C}$ of $M$, and collections of finite-dimensional families of paths relative to $\mathscr{C}$, we define a homotopical equivalence relation of parallel transport maps, leading to the concept of an extended lattice gauge (ELG) field. A lattice gauge field, as used in Lattice Gauge Theory, is part of the data contained in an ELG field, but the latter contains further local topological information sufficient to reconstruct a principal $G$-bundle on $M$ up to equivalence. The space of ELG fields of a given pair $(M,\mathscr{C})$ is a covering for the space of fields in Lattice Gauge Theory, whose connected components parametrize equivalence classes of principal $G$-bundles on $M$. We give a criterion to determine when ELG fields over different cotriangulations define equivalent bundles.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com