Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Information Ratio (1612.09343v2)

Published 29 Dec 2016 in cs.IT, cs.DM, math.CO, and math.IT

Abstract: We introduce the notion of information ratio $\text{Ir}(H/G)$ between two (simple, undirected) graphs $G$ and $H$, defined as the supremum of ratios $k/n$ such that there exists a mapping between the strong products $Gk$ to $Hn$ that preserves non-adjacency. Operationally speaking, the information ratio is the maximal number of source symbols per channel use that can be reliably sent over a channel with a confusion graph $H$, where reliability is measured w.r.t. a source confusion graph $G$. Various results are provided, including in particular lower and upper bounds on $\text{Ir}(H/G)$ in terms of different graph properties, inequalities and identities for behavior under strong product and disjoint union, relations to graph cores, and notions of graph criticality. Informally speaking, $\text{Ir}(H/G)$ can be interpreted as a measure of similarity between $G$ and $H$. We make this notion precise by introducing the concept of information equivalence between graphs, a more quantitative version of homomorphic equivalence. We then describe a natural partial ordering over the space of information equivalence classes, and endow it with a suitable metric structure that is contractive under the strong product. Various examples and open problems are discussed.

Citations (9)

Summary

We haven't generated a summary for this paper yet.