Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Learning Approach To Multiple Kernel Fusion (1612.09007v1)

Published 28 Dec 2016 in stat.ML and cs.LG

Abstract: Kernel fusion is a popular and effective approach for combining multiple features that characterize different aspects of data. Traditional approaches for Multiple Kernel Learning (MKL) attempt to learn the parameters for combining the kernels through sophisticated optimization procedures. In this paper, we propose an alternative approach that creates dense embeddings for data using the kernel similarities and adopts a deep neural network architecture for fusing the embeddings. In order to improve the effectiveness of this network, we introduce the kernel dropout regularization strategy coupled with the use of an expanded set of composition kernels. Experiment results on a real-world activity recognition dataset show that the proposed architecture is effective in fusing kernels and achieves state-of-the-art performance.

Citations (18)

Summary

We haven't generated a summary for this paper yet.