Joint Network Coding and Machine Learning for Error-prone Wireless Broadcast (1612.08914v1)
Abstract: Reliable broadcasting data to multiple receivers over lossy wireless channels is challenging due to the heterogeneity of the wireless link conditions. Automatic Repeat-reQuest (ARQ) based retransmission schemes are bandwidth inefficient due to data duplication at receivers. Network coding (NC) has been shown to be a promising technique for improving network bandwidth efficiency by combining multiple lost data packets for retransmission. However, it is challenging to accurately determine which lost packets should be combined together due to disrupted feedback channels. This paper proposes an adaptive data encoding scheme at the transmitter by joining network coding and machine learning (NCML) for retransmission of lost packets. Our proposed NCML extracts the important features from historical feedback signals received by the transmitter to train a classifier. The constructed classifier is then used to predict states of transmitted data packets at different receivers based on their corrupted feedback signals for effective data mixing. We have conducted extensive simulations to collaborate the efficiency of our proposed approach. The simulation results show that our machine learning algorithm can be trained efficiently and accurately. The simulation results show that on average the proposed NCML can correctly classify 90% of the states of transmitted data packets at different receivers. It achieves significant bandwidth gain compared with the ARQ and NC based schemes in different transmission terrains, power levels, and the distances between the transmitter and receivers.
- Dong Nguyen (28 papers)
- Canh Nguyen (1 paper)
- Thuan Duong-Ba (1 paper)
- Hung Nguyen (48 papers)
- Anh Nguyen (157 papers)
- Tuan Tran (68 papers)