Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the commitment value and commitment optimal strategies in bimatrix games (1612.08888v1)

Published 28 Dec 2016 in cs.GT

Abstract: Given a bimatrix game, the associated leadership or commitment games are defined as the games at which one player, the leader, commits to a (possibly mixed) strategy and the other player, the follower, chooses his strategy after having observed the irrevocable commitment of the leader. Based on a result by von Stengel and Zamir [2010], the notions of commitment value and commitment optimal strategies for each player are discussed as a possible solution concept. It is shown that in non-degenerate bimatrix games (a) pure commitment optimal strategies together with the follower's best response constitute Nash equilibria, and (b) strategies that participate in a completely mixed Nash equilibrium are strictly worse than commitment optimal strategies, provided they are not matrix game optimal. For various classes of bimatrix games that generalize zero sum games, the relationship between the maximin value of the leader's payoff matrix, the Nash equilibrium payoff and the commitment optimal value is discussed. For the Traveler's Dilemma, the commitment optimal strategy and commitment value for the leader are evaluated and seem more acceptable as a solution than the unique Nash equilibrium. Finally, the relationship between commitment optimal strategies and Nash equilibria in $2 \times 2$ bimatrix games is thoroughly examined and in addition, necessary and sufficient conditions for the follower to be worse off at the equilibrium of the leadership game than at any Nash equilibrium of the simultaneous move game are provided.

Citations (4)

Summary

We haven't generated a summary for this paper yet.