Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New families of irreducible weight modules over $\mathfrak{sl}_{3}$ (1612.08652v1)

Published 27 Dec 2016 in math.RT, math.QA, and math.RA

Abstract: Let $n>1$ be an integer, $\alpha\in{\mathbb C}n$, $b\in{\mathbb C}$, and $V$ a $\mathfrak{gl}n$-module. We define a class of weight modules $F\alpha{b}(V)$ over $\sl_{n+1}$ using the restriction of modules of tensor fields over the Lie algebra of vector fields on $n$-dimensional torus. In this paper we consider the case $n=2$ and prove the irreducibility of such 5-parameter $\mathfrak{sl}{3}$-modules $F\alpha{b}(V)$ generically. All such modules have infinite dimensional weight spaces and lie outside of the category of Gelfand-Tsetlin modules. Hence, this construction yields new families of irreducible $\mathfrak{sl}_{3}$-modules.

Summary

We haven't generated a summary for this paper yet.