Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

C*-algebraic approach to fixed point theory generalizes Baggett's theorem to groups with discrete reduced duals (1612.08286v8)

Published 25 Dec 2016 in math.FA

Abstract: In this paper, we show that if the reduced Fourier-Stieltjes algebra $B_{\rho}(G)$ of a second countable locally compact group $G$ has either weak* fixed point property or asymptotic center property, then $G$ is compact. As a result, we give affirmative answers to open problems raised by Fendler and et al. in 2013. We then conclude that a second countable group with a discrete reduced dual must be compact. This generalizes a theorem of Baggett. We also construct a compact scattered Hausdorff space $\Omega$ for which the dual of the scattered C*-algebra $C(\Omega)$ lacks weak* fixed point property. The C*-algebra $C(\Omega)$ provides a negative answer to a question of Randrianantoanina in 2010. In addition, we prove a variant of Bruck's generalized fixed point theorem for the preduals of von Neumann algebras. Furthermore, we give some examples emphasizing that the conditions in Bruck's generalized conjecture (BGC) can not be weakened any more.

Summary

We haven't generated a summary for this paper yet.