Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Broadcast Independence Number of Caterpillars (1612.08283v2)

Published 25 Dec 2016 in cs.DM

Abstract: Let $G$ be a simple undirected graph.A broadcast on $G$ isa function $f : V(G)\rightarrow\mathbb{N}$ such that $f(v)\le e_G(v)$ holds for every vertex $v$ of $G$, where $e_G(v)$ denotes the eccentricity of $v$ in $G$, that is, the maximum distance from $v$ to any other vertex of $G$.The cost of $f$ is the value ${\rm cost}(f)=\sum_{v\in V(G)}f(v)$.A broadcast $f$ on $G$ is independent if for every two distinct vertices $u$ and $v$ in $G$, $d_G(u,v)>\max{f(u),f(v)}$,where $d_G(u,v)$ denotes the distance between $u$ and $v$ in $G$.The broadcast independence number of $G$ is then defined as the maximum cost of an independent broadcast on $G$. In this paper, we study independent broadcasts of caterpillars and give an explicit formula for the broadcast independence number of caterpillars having no pair of adjacent vertices with degree 2.

Citations (15)

Summary

We haven't generated a summary for this paper yet.