Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Human-Machine Cooperative Visual Search With Soft Highlighting (1612.08117v1)

Published 24 Dec 2016 in cs.HC and cs.NE

Abstract: Advances in machine learning have produced systems that attain human-level performance on certain visual tasks, e.g., object identification. Nonetheless, other tasks requiring visual expertise are unlikely to be entrusted to machines for some time, e.g., satellite and medical imagery analysis. We describe a human-machine cooperative approach to visual search, the aim of which is to outperform either human or machine acting alone. The traditional route to augmenting human performance with automatic classifiers is to draw boxes around regions of an image deemed likely to contain a target. Human experts typically reject this type of hard highlighting. We propose instead a soft highlighting technique in which the saliency of regions of the visual field is modulated in a graded fashion based on classifier confidence level. We report on experiments with both synthetic and natural images showing that soft highlighting achieves a performance synergy surpassing that attained by hard highlighting.

Citations (24)

Summary

We haven't generated a summary for this paper yet.