Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised Opinion Aspect Extraction by Exploiting Past Extraction Results (1612.07940v1)

Published 23 Dec 2016 in cs.CL and cs.LG

Abstract: One of the key tasks of sentiment analysis of product reviews is to extract product aspects or features that users have expressed opinions on. In this work, we focus on using supervised sequence labeling as the base approach to performing the task. Although several extraction methods using sequence labeling methods such as Conditional Random Fields (CRF) and Hidden Markov Models (HMM) have been proposed, we show that this supervised approach can be significantly improved by exploiting the idea of concept sharing across multiple domains. For example, "screen" is an aspect in iPhone, but not only iPhone has a screen, many electronic devices have screens too. When "screen" appears in a review of a new domain (or product), it is likely to be an aspect too. Knowing this information enables us to do much better extraction in the new domain. This paper proposes a novel extraction method exploiting this idea in the context of supervised sequence labeling. Experimental results show that it produces markedly better results than without using the past information.

Citations (4)

Summary

We haven't generated a summary for this paper yet.