The Globalization Theorem for the Curvature Dimension Condition (1612.07623v2)
Abstract: The Lott-Sturm-Villani Curvature-Dimension condition provides a synthetic notion for a metric-measure space to have Ricci-curvature bounded from below and dimension bounded from above. We prove that it is enough to verify this condition locally: an essentially non-branching metric-measure space $(X,{\mathsf d},{\mathfrak m})$ (so that $(\text{supp} \; {\mathfrak m},{\mathsf d})$ is a length-space and ${\mathfrak m}(X) < \infty$) verifying the local Curvature-Dimension condition $\mathsf{CD}_{loc}(K,N)$ with parameters $K \in \mathbb{R}$ and $N \in (1,\infty)$, also verifies the global Curvature-Dimension condition $\mathsf{CD}(K,N)$. In other words, the Curvature-Dimension condition enjoys the globalization (or local-to-global) property, answering a question which had remained open since the beginning of the theory. For the proof, we establish an equivalence between $L1$ and $L2$ optimal-transport-based interpolation. The challenge is not merely a technical one, and several new conceptual ingredients which are of independent interest are developed: an explicit change-of-variables formula for densities of Wasserstein geodesics depending on a second-order temporal derivative of associated Kantorovich potentials; a surprising third-order theory for the latter Kantorovich potentials, which holds in complete generality on any proper geodesic space; and a certain rigidity property of the change-of-variables formula, allowing us to bootstrap the a-priori available regularity. As a consequence, numerous variants of the Curvature-Dimension condition proposed by various authors throughout the years are shown to, in fact, all be equivalent in the above setting, thereby unifying the theory.