Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A simple method to construct confidence bands in functional linear regression (1612.07490v3)

Published 22 Dec 2016 in math.ST and stat.TH

Abstract: This paper develops a simple method to construct confidence bands, centered at a principal component analysis (PCA) based estimator, for the slope function in a functional linear regression model with a scalar response variable and a functional predictor variable. The PCA-based estimator is a series estimator with estimated basis functions, and so construction of valid confidence bands for it is a non-trivial challenge. We propose a confidence band that aims at covering the slope function at "most" of points with a prespecified probability (level), and prove its asymptotic validity under suitable regularity conditions. Importantly, this is the first paper that derives confidence bands having theoretical justifications for the PCA-based estimator. We also propose a practical method to choose the cut-off level used in PCA-based estimation, and conduct numerical studies to verify the finite sample performance of the proposed confidence band. Finally, we apply our methodology to spectrometric data, and discuss extensions of our methodology to cases where additional vector-valued regressors are present.

Summary

We haven't generated a summary for this paper yet.