Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

Parallelized Tensor Train Learning of Polynomial Classifiers (1612.06505v4)

Published 20 Dec 2016 in cs.LG and cs.AI

Abstract: In pattern classification, polynomial classifiers are well-studied methods as they are capable of generating complex decision surfaces. Unfortunately, the use of multivariate polynomials is limited to kernels as in support vector machines, because polynomials quickly become impractical for high-dimensional problems. In this paper, we effectively overcome the curse of dimensionality by employing the tensor train format to represent a polynomial classifier. Based on the structure of tensor trains, two learning algorithms are proposed which involve solving different optimization problems of low computational complexity. Furthermore, we show how both regularization to prevent overfitting and parallelization, which enables the use of large training sets, are incorporated into these methods. Both the efficiency and efficacy of our tensor-based polynomial classifier are then demonstrated on the two popular datasets USPS and MNIST.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.