Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monte Carlo goodness-of-fit tests for degree corrected and related stochastic blockmodels (1612.06040v4)

Published 19 Dec 2016 in stat.ME, math.ST, and stat.TH

Abstract: We construct Bayesian and frequentist finite-sample goodness-of-fit tests for three different variants of the stochastic blockmodel for network data. Since all of the stochastic blockmodel variants are log-linear in form when block assignments are known, the tests for the \emph{latent} block model versions combine a block membership estimator with the algebraic statistics machinery for testing goodness-of-fit in log-linear models. We describe Markov bases and marginal polytopes of the variants of the stochastic blockmodel, and discuss how both facilitate the development of goodness-of-fit tests and understanding of model behavior. The general testing methodology developed here extends to any finite mixture of log-linear models on discrete data, and as such is the first application of the algebraic statistics machinery for latent-variable models.

Summary

We haven't generated a summary for this paper yet.