Vector Invariants For Two-dimensional Orthogonal Groups Over Finite Fields (1612.06039v2)
Abstract: Let $\mathbb{F}{q}$ be a finite field of characteristic 2 and $O_2(\mathbb{F}{q}){+}$ be the 2-dimensional orthogonal group of plus type over $\mathbb{F}{q}$. Consider the standard representation $V$ of $O_2(\mathbb{F}{q}){+}$ and the ring of vector invariants $\mathbb{F}{q}[mV]{O_2(\mathbb{F}{q}){+}}$ for any $m\in \mathbb{N}{+}$. We prove a first main theorem for $(O_2(\mathbb{F}{q}){+},V)$, i.e., we find a minimal generating set for $\mathbb{F}{q}[mV]{O_2(\mathbb{F}_{q}){+}}$. As a consequence, we derive the Noether number $\beta_{mV}(O_2(\mathbb{F}{q}){+})=\max{q-1,m}$. We construct a free basis for $\mathbb{F}{q}[2V]{O_2(\mathbb{F}_{q}){+}}$ over a suitably chosen homogeneous system of parameters. We also obtain a generating set of the Hilbert ideal for $\mathbb{F}{q}[mV]{O_2(\mathbb{F}{q}){+}}$ which shows that the Hilbert ideal can be generated by invariants of degree $\leqslant q-1=\frac{|O_2(\mathbb{F}_{q}){+}|}{2}$, confirming Derksen-Kemper's conjecture \cite[Conjecture 3.8.6 (b)]{DK2002} in this particular case.