Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Probabilistic Representation for Dynamic Movement Primitives (1612.05932v1)

Published 18 Dec 2016 in cs.RO

Abstract: Dynamic Movement Primitives have successfully been used to realize imitation learning, trial-and-error learning, reinforce- ment learning, movement recognition and segmentation and control. Because of this they have become a popular represen- tation for motor primitives. In this work, we showcase how DMPs can be reformulated as a probabilistic linear dynamical system with control inputs. Through this probabilistic repre- sentation of DMPs, algorithms such as Kalman filtering and smoothing are directly applicable to perform inference on pro- prioceptive sensor measurements during execution. We show that inference in this probabilistic model automatically leads to a feedback term to online modulate the execution of a DMP. Furthermore, we show how inference allows us to measure the likelihood that we are successfully executing a given motion primitive. In this context, we show initial results of using the probabilistic model to detect execution failures on a simulated movement primitive dataset.

Citations (23)

Summary

We haven't generated a summary for this paper yet.