Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

User Model-Based Intent-Aware Metrics for Multilingual Search Evaluation (1612.04418v1)

Published 13 Dec 2016 in cs.IR, cs.CL, cs.HC, cs.LG, and stat.ML

Abstract: Despite the growing importance of multilingual aspect of web search, no appropriate offline metrics to evaluate its quality are proposed so far. At the same time, personal language preferences can be regarded as intents of a query. This approach translates the multilingual search problem into a particular task of search diversification. Furthermore, the standard intent-aware approach could be adopted to build a diversified metric for multilingual search on the basis of a classical IR metric such as ERR. The intent-aware approach estimates user satisfaction under a user behavior model. We show however that the underlying user behavior models is not realistic in the multilingual case, and the produced intent-aware metric do not appropriately estimate the user satisfaction. We develop a novel approach to build intent-aware user behavior models, which overcome these limitations and convert to quality metrics that better correlate with standard online metrics of user satisfaction.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.