Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

Multi-Perspective Context Matching for Machine Comprehension (1612.04211v1)

Published 13 Dec 2016 in cs.CL

Abstract: Previous machine comprehension (MC) datasets are either too small to train end-to-end deep learning models, or not difficult enough to evaluate the ability of current MC techniques. The newly released SQuAD dataset alleviates these limitations, and gives us a chance to develop more realistic MC models. Based on this dataset, we propose a Multi-Perspective Context Matching (MPCM) model, which is an end-to-end system that directly predicts the answer beginning and ending points in a passage. Our model first adjusts each word-embedding vector in the passage by multiplying a relevancy weight computed against the question. Then, we encode the question and weighted passage by using bi-directional LSTMs. For each point in the passage, our model matches the context of this point against the encoded question from multiple perspectives and produces a matching vector. Given those matched vectors, we employ another bi-directional LSTM to aggregate all the information and predict the beginning and ending points. Experimental result on the test set of SQuAD shows that our model achieves a competitive result on the leaderboard.

Citations (158)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube