Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Green OFDMA Resource Allocation in Cache-Enabled CRAN (1612.04065v1)

Published 13 Dec 2016 in cs.IT and math.IT

Abstract: Cloud radio access network (CRAN), in which remote radio heads (RRHs) are deployed to serve users in a target area, and connected to a central processor (CP) via limited-capacity links termed the fronthaul, is a promising candidate for the next-generation wireless communication systems. Due to the content-centric nature of future wireless communications, it is desirable to cache popular contents beforehand at the RRHs, to reduce the burden on the fronthaul and achieve energy saving through cooperative transmission. This motivates our study in this paper on the energy efficient transmission in an orthogonal frequency division multiple access (OFDMA)-based CRAN with multiple RRHs and users, where the RRHs can prefetch popular contents. We consider a joint optimization of the user-SC assignment, RRH selection and transmit power allocation over all the SCs to minimize the total transmit power of the RRHs, subject to the RRHs' individual fronthaul capacity constraints and the users' minimum rate constraints, while taking into account the caching status at the RRHs. Although the problem is non-convex, we propose a Lagrange duality based solution, which can be efficiently computed with good accuracy. We compare the minimum transmit power required by the proposed algorithm with different caching strategies against the case without caching by simulations, which show the significant energy saving with caching.

Citations (21)

Summary

We haven't generated a summary for this paper yet.