Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Context-aware Sentiment Word Identification: sentiword2vec (1612.03769v1)

Published 12 Dec 2016 in cs.CL and cs.AI

Abstract: Traditional sentiment analysis often uses sentiment dictionary to extract sentiment information in text and classify documents. However, emerging informal words and phrases in user generated content call for analysis aware to the context. Usually, they have special meanings in a particular context. Because of its great performance in representing inter-word relation, we use sentiment word vectors to identify the special words. Based on the distributed LLM word2vec, in this paper we represent a novel method about sentiment representation of word under particular context, to be detailed, to identify the words with abnormal sentiment polarity in long answers. Result shows the improved model shows better performance in representing the words with special meaning, while keep doing well in representing special idiomatic pattern. Finally, we will discuss the meaning of vectors representing in the field of sentiment, which may be different from general object-based conditions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.