Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring Adverse Drug Effects on Multimorbity using Tractable Bayesian Networks (1612.03055v1)

Published 9 Dec 2016 in cs.AI

Abstract: Managing patients with multimorbidity often results in polypharmacy: the prescription of multiple drugs. However, the long-term effects of specific combinations of drugs and diseases are typically unknown. In particular, drugs prescribed for one condition may result in adverse effects for the other. To investigate which types of drugs may affect the further progression of multimorbidity, we query models of diseases and prescriptions that are learned from primary care data. State-of-the-art tractable Bayesian network representations, on which such complex queries can be computed efficiently, are employed for these large medical networks. Our results confirm that prescriptions may lead to unintended negative consequences in further development of multimorbidity in cardiovascular diseases. Moreover, a drug treatment for one disease group may affect diseases of another group.

Citations (1)

Summary

We haven't generated a summary for this paper yet.