A Higher Order Isoparametric Fictitious Domain Method for Level Set Domains (1612.02561v5)
Abstract: We consider a new fictitious domain approach of higher order accuracy. To implement Dirichlet conditions we apply the classical Nitsche method combined with a facet-based stabilization (ghost penalty). Both techniques are combined with a higher order isoparametric finite element space which is based on a special mesh transformation. The mesh transformation is build upon a higher order accurate level set representation and allows to reduce the problem of numerical integration to problems on domains which are described by piecewise linear level set functions. The combination of this strategy for the numerical integration and the stabilized Nitsche formulation results in an accurate and robust method. We introduce and analyze it and give numerical examples.