Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A temporal model for multiple sclerosis course evolution (1612.00615v1)

Published 2 Dec 2016 in stat.ML and cs.LG

Abstract: Multiple Sclerosis is a degenerative condition of the central nervous system that affects nearly 2.5 million of individuals in terms of their physical, cognitive, psychological and social capabilities. Researchers are currently investigating on the use of patient reported outcome measures for the assessment of impact and evolution of the disease on the life of the patients. To date, a clear understanding on the use of such measures to predict the evolution of the disease is still lacking. In this work we resort to regularized machine learning methods for binary classification and multiple output regression. We propose a pipeline that can be used to predict the disease progression from patient reported measures. The obtained model is tested on a data set collected from an ongoing clinical research project.

Citations (1)

Summary

We haven't generated a summary for this paper yet.