Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Natural Min-Max Construction for Ginzburg-Landau Functionals (1612.00544v3)

Published 2 Dec 2016 in math.DG

Abstract: We use min-max techniques to produce nontrivial solutions $u_{\epsilon}:M\to \mathbb{R}2$ of the Ginzburg-Landau equation $\Delta u_{\epsilon}+\frac{1}{\epsilon2}(1-|u_{\epsilon}|2)u_{\epsilon}=0$ on a given compact Riemannian manifold, whose energy grows like $|\log\epsilon|$ as $\epsilon\to 0$. When the degree one cohomology $H1_{dR}(M)=0$, we show that the energy of these solutions concentrates on a nontrivial stationary, rectifiable $(n-2)$-varifold $V$.

Summary

We haven't generated a summary for this paper yet.