Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference for the mode of a log-concave density (1611.10348v3)

Published 30 Nov 2016 in math.ST and stat.TH

Abstract: We study a likelihood ratio test for the location of the mode of a log-concave density. Our test is based on comparison of the log-likelihoods corresponding to the unconstrained maximum likelihood estimator of a log-concave density and the constrained maximum likelihood estimator where the constraint is that the mode of the density is fixed, say at $m$. The constrained estimation problem is studied in detail in Doss and Wellner [2018]. Here the results of that paper are used to show that, under the null hypothesis (and strict curvature of $-\log f$ at the mode), the likelihood ratio statistic is asymptotically pivotal: that is, it converges in distribution to a limiting distribution which is free of nuisance parameters, thus playing the role of the $\chi_12$ distribution in classical parametric statistical problems. By inverting this family of tests we obtain new (likelihood ratio based) confidence intervals for the mode of a log-concave density $f$. These new intervals do not depend on any smoothing parameters. We study the new confidence intervals via Monte Carlo methods and illustrate them with two real data sets. The new intervals seem to have several advantages over existing procedures. Software implementing the test and confidence intervals is available in the R package \verb+logcondens.mode+.

Summary

We haven't generated a summary for this paper yet.