Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SLA Violation Prediction In Cloud Computing: A Machine Learning Perspective (1611.10338v1)

Published 30 Nov 2016 in cs.DC and cs.LG

Abstract: Service level agreement (SLA) is an essential part of cloud systems to ensure maximum availability of services for customers. With a violation of SLA, the provider has to pay penalties. In this paper, we explore two machine learning models: Naive Bayes and Random Forest Classifiers to predict SLA violations. Since SLA violations are a rare event in the real world (~0.2 %), the classification task becomes more challenging. In order to overcome these challenges, we use several re-sampling methods. We find that random forests with SMOTE-ENN re-sampling have the best performance among other methods with the accuracy of 99.88 % and F_1 score of 0.9980.

Citations (23)

Summary

We haven't generated a summary for this paper yet.