Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computer Aided Detection of Oral Lesions on CT Images (1611.09769v1)

Published 29 Nov 2016 in cs.CV

Abstract: Oral lesions are important findings on computed tomography (CT) images. In this study, a fully automatic method to detect oral lesions in mandibular region from dental CT images is proposed. Two methods were developed to recognize two types of lesions namely (1) Close border (CB) lesions and (2) Open border (OB) lesions, which cover most of the lesion types that can be found on CT images. For the detection of CB lesions, fifteen features were extracted from each initial lesion candidates and multi layer perceptron (MLP) neural network was used to classify suspicious regions. Moreover, OB lesions were detected using a rule based image processing method, where no feature extraction or classification algorithm were used. The results were validated using a CT dataset of 52 patients, where 22 patients had abnormalities and 30 patients were normal. Using non-training dataset, CB detection algorithm yielded 71% sensitivity with 0.31 false positives per patient. Furthermore, OB detection algorithm achieved 100% sensitivity with 0.13 false positives per patient. Results suggest that, the proposed framework, which consists of two methods, has the potential to be used in clinical context, and assist radiologists for better diagnosis.

Summary

We haven't generated a summary for this paper yet.