Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
36 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Many-Body Coarse-Grained Interactions using Gaussian Approximation Potentials (1611.09123v2)

Published 28 Nov 2016 in cond-mat.soft, cond-mat.stat-mech, and physics.comp-ph

Abstract: This thesis introduces a framework that is able to describe general many-body coarse-grained interactions. We make use of this to describe the free energy surface as a cluster expansion in terms of monomer, dimer, and trimer terms. The contributions to the free energy due to these terms are inferred from MD results of the underlying all-atom model using Gaussian Approximation Potentials, a type of machine-learning potential based on Gaussian process regression. This provides CG interactions that are much more accurate than is possible with site-based pair potentials. While slower than these, it can still be faster than all-atom simulations for solvent-free CG models of systems with a large amount of solvent, as is common in biomolecular simulations.

Citations (108)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)