Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Event-chain Monte Carlo algorithms for three- and many-particle interactions (1611.09098v2)

Published 28 Nov 2016 in cond-mat.stat-mech and cond-mat.soft

Abstract: We generalize the rejection-free event-chain Monte Carlo algorithm from many particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: (i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; (ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; (iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.

Summary

We haven't generated a summary for this paper yet.