Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential Private Noise Adding Mechanism and Its Application on Consensus (1611.08936v2)

Published 27 Nov 2016 in cs.IT and math.IT

Abstract: Differential privacy is a formal mathematical {stand-ard} for quantifying the degree of that individual privacy in a statistical database is preserved. To guarantee differential privacy, a typical method is adding random noise to the original data for data release. In this paper, we investigate the conditions of differential privacy considering the general random noise adding mechanism, and then apply the obtained results for privacy analysis of the privacy-preserving consensus algorithm. Specifically, we obtain a necessary and sufficient condition of $\epsilon$-differential privacy, and the sufficient conditions of $(\epsilon, \delta)$-differential privacy. We apply them to analyze various random noises. For the special cases with known results, our theory matches with the literature; for other cases that are unknown, our approach provides a simple and effective tool for differential privacy analysis. Applying the obtained theory, on privacy-preserving consensus algorithms, it is proved that the average consensus and $\epsilon$-differential privacy cannot be guaranteed simultaneously by any privacy-preserving consensus algorithm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.