Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training an Interactive Humanoid Robot Using Multimodal Deep Reinforcement Learning (1611.08666v1)

Published 26 Nov 2016 in cs.LG, cs.AI, and cs.RO

Abstract: Training robots to perceive, act and communicate using multiple modalities still represents a challenging problem, particularly if robots are expected to learn efficiently from small sets of example interactions. We describe a learning approach as a step in this direction, where we teach a humanoid robot how to play the game of noughts and crosses. Given that multiple multimodal skills can be trained to play this game, we focus our attention to training the robot to perceive the game, and to interact in this game. Our multimodal deep reinforcement learning agent perceives multimodal features and exhibits verbal and non-verbal actions while playing. Experimental results using simulations show that the robot can learn to win or draw up to 98% of the games. A pilot test of the proposed multimodal system for the targeted game---integrating speech, vision and gestures---reports that reasonable and fluent interactions can be achieved using the proposed approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.